Fertilization and embryogenesis

1. Ovulation and fertilization
2. Assisted reproduction
3. Early development of the human embryo
 - Cleavage and blastogenesis
 - Implantation
 - Bilaminar germ disc
 - Trilaminar germ disc (Gastrulation)
Menstrual cycle

- menstrual cycle (28 days)
 - phases:
 - menstrual – 3-5 days (menstruation)
 - proliferative (follicular) phase – 5-14 day
 - secretory (luteal) phase – till 26-27 day
 - premenstrual (ischemic) phase – 1-2 days

fertile window – ~7 days

the time from 5 days before until 1–2 days after ovulation
Menstrual vs. ovarian cycle

Ovarian Cycle (Follicle Development)
- Follicular Phase
- Luteal Phase

Menstrual Cycle (Uterine Lining Development)
- Menstruation
- Proliferative Phase
- Secretory Phase

Ovarian cycle:
- Primary follicle
- Secondary follicle
- Vesicular follicle
- Ovulation
- Corpus luteum forms
- Regression

Gonadotropin levels:
- FSH
- LH

Ovarian hormone levels:
- Estrogen
- Progesterone

Uterine cycle:
- Menstrual flow
- Functional layer
- Basal layer

Days:
- Follicular phase
- Ovulation
- Luteal phase

Prof. Dr. Nikolai Lazarov
Menstrual vs. ovarian cycle

Ovarian Cycle
- Low estrogen at the end of menses

Follicular Phase
- Follicle growth
- Increase in estrogen

Ovulation
- LH surge
- Release of mature follicle
- Progesterone surge

Luteal Phase
- Corpus luteum formation
- Progesterone production

Uterine Cycle
- Proliferative phase: influenced by estrogen, the thickness of the endometrium rapidly increases
- Secretory phase: influenced by progesterone, the lining becomes highly vascular and edematous

www.medcomic.com © 2013 Jorge Muniz

Prof. Dr. Nikolai Lazarov
Ovulation

- **Ovulation:**
 - The process by which an oocyte is released from the Graafian follicle
 - A cyclic process, blocked during pregnancy
 - Takes place around 14-15 day
 - Preovulatory Graafian follicle
 - Liberation of the ovum
 - Stigma
 - Corona radiata
Fertilization

- **fertilisatio (fecundatio):**
 - the process by which the male and female gametes fuse
 - occurs in the ampulla of the uterine tube
 - preceded by insemination – the introduction of sperm into the female reproductive tract

- **main results of fertilization:**
 - restoration of the diploid number of chromosomes
 - determination of the sex of the new individual
 - initiation of cleavage
 - without fertilization the oocyte degenerates 24h after ovulation!
Fertilization requires ...

- penetration of cervical mucus
- capacitation
- penetration of corona radiata (for which capacitation is necessary)
- dissolution of zona pellucida
 - Sperm receptor
 - Acrosomal reaction
- penetrating the egg’s plasma membrane
 - sperm-egg adhesion
Insemination and capacitation

- **insemination:**
 - an internal process in the female genitalia
 - the introduction of sperm into the female reproductive tract
 - ejaculation

- **capacitation:**
 - duration ~ 7h
 - removal of a glycoprotein coat and seminal plasma proteins
 - acrosome reaction - release of:
 - hyaluronidase ⇒ penetration of the corona radiata barrier
 - trypsin-like substance ⇒ digestion of the zona pellucida
 - acrosin (zonalysin) ⇒ helps the spermatozoon cross the zona pellucida
Preconditions of fertilization:

- Capacitation of sperms
 - a period of conditioning in the female reproductive tract

- Acrosome reaction - release of:
 - Hyaluronidase → penetration of the corona radiata barrier
 - Trypsin-like substance → digestion of the zona pellucida
 - Acrosin (zonalysin) → helps the spermatozoon cross the zona pellucida

Prof. Dr. Nikolai Lazarov
Fertilization

phases:
- penetration of the corona radiata
 - 300-500 spermatozoa reach the site
 - only one penetrates
- penetration of the zona pellucida
 - inner acrosomal membrane dissolves
 - zona reaction – avoids consequent penetration
- fusion of oocyte - sperm cell membranes
 - cortical reaction – polyspermy is prevented
 - resumption of second meiotic division ⇒ female pronucleus
 - stage of male and female pronuclei
 - metabolic activation of the egg
Assisted reproduction

- **in vitro fertilization (IVF):**
 - a process by which egg cells are fertilized by sperm outside the womb, *in vitro*
 - provides the opportunity to alleviate infertility from a variety of causes
 - to karyotype fertilize ova as a means of averting chromosomal anomalies
 - disadvantage of the technique – the low success rate (20%) of the procedure
 - four or five ova are collected, fertilized, and placed in the uterus ⇒ multiple births

- **gamete intrafallopian transfer (GIFT):**
 - introduction of oocytes and sperm into the ampulla of the fallopian tube

- **zygote intrafallopian transfer (ZIFT):**
 - fertilized oocytes are placed in the ampullary region of the fallopian tube

- **intracytoplasmic sperm injection (ICSI):**
 - in severe male infertility:
 - a single sperm is injected into the cytoplasm of the egg to cause fertilization
 - an alternative to using donor sperm for IVF
Cleavage

- **segmentatio** - a series of mitotic divisions:
 - begin of the process ~30 h
 - duration – 3-4 days

- cleavage division:
 - total cleavage
 - unequal cleavage
 - microblastomeres
 - macroblastomeres
 - asynchronous

- main events:
 - increase in number of cells in the embryo
 - decrease in size of cells (blastomeres)
 - compaction
 - formation of a morula (mulberry)
 - 16 blastomeres
 - ~3 days after fertilization
Blastogenesis

- **Blastocyst formation:**
 - inner cell mass - embryoblast
 - embryonic pole
 - abembryonic pole
 - outer cell mass - trophoblast
 - cytotrophoblast
 - syncytiotrophoblast

- **disappearance of the zona pellucida**

- entering the uterine cavity
 - 4-5 day
Implantation

- **Implantacio** (Lat. *in*, within + *plantare*, to plant)
- **Nidation, nidacio** (Lat. *nidus*, nest)

- **Begin of the process – 6-7 day**
- **Duration – ~40 h**

Mechanism:
- **Adhesion:**
 - Cytotrophoblast
 - Syncytiotrophoblast
- **Invasion:**
 - Erosion of the uterine mucosa (endometrium)
 - Embryoblast – bilaminar germ disk
 - Amniotic cavity
 - Trophoblast – primary villi
 - Chorionic cavity
Implantation

- implantation sites:
 - normal sites of implantation ("plug"):
 - uterine cavity
 - posterior uterine wall
 - lateral uterine wall
 - superior cervix
 - abnormal implantation sites:
 - uterine (Fallopian) tube (tubal pregnancies) - 98%
 - infundibular tubal
 - ampullar tubal
 - isthmic tubal } extraterine (ectopic) pregnancy
 - cervical canal (cervical pregnancies) - <1% (placenta previa)
 - ovaries (primary ovarian pregnancy)
 - mesentery
 - abdominal cavity (abdominal pregnancies)
Bilaminar germ disk

- 2nd week of development:
 - epiblast layer
 - hypoblast layer

- epiblast ⇒ amniotic cavity:
 - outer amnioblasts ⇒ amnion
 - inner amnioblasts ⇒ embryo

- hypoblast ⇒ yolk sac:
 - primitive yolk sac (exocoelomic cavity)
 - secondary yolk sac (definitive yolk sac)
Bilaminar germ disk

- **extraembryonic coelom** ⇒ chorionic cavity
 - somatopleuric mesoderm
 - splanchnopleuric mesoderm

- **connecting stalk** ⇒ umbilical cord

- **trophoblast – lacunar stage**
 - primary villi
 - maternal sinusoids
 - primitive uteroplacental circulation
Trilaminar germ disk

- **3rd week of development:**
 - **gasrtulation:** formation of all three germ layers
 - formation of primitive streak
 - primitive (Hensen's) node
 - primitive pit
 - proliferation and invagination of the epiblast ⇒ formation of **three germ layers**:
 - definitive **ectoderm**
 - intraembryonic **mesoderm**
 - **endoderm**

[Diagram of germ layers and development stages]

- Primitive streak
- Epiblast
- Mesoderm
- Endoderm
- Notochord
- Extraembryonic mesoderm
- Intraembryonic mesoderm
- Buccopharyngeal membrane
- Yolk sac
- Amnioblasts
- Invaginating mesoderm cells
- Hypoblast
- Epiblast
- Detaching cells
- Primitive node
- Epiblast
- Hypoblast
- Notochord
- Endoderm
- Intraembryonic mesoderm

[Image of a cell with various labeled parts]
Trilaminar germ disk

- formation of notochord:
 - prenotochordal cells ⇒ prechordal plate
 - bilaminar notochordal plate
 - definitive notochord ⇒ the basis of the axial skeleton (vertebral column)
Establishment of the body axes

- **anteroposterior axis:**
 - cells at the anterior (cranial) margin of the embryonic disc (anterior visceral endoderm – AVE)
 - head-forming genes, including **OTX2**, **LIM1**, and **HESX1** and the secreted factor **cerberus**
 - **chordin**, **noggin**, and **follistatin** (activin-binding protein) and **bone morphogenetic protein 4 (BMP4)**
 - in more caudal regions
 - **brachyury (T)** gene

- **left-right axis:**
 - **FGF-8**, secreted by cells in the node and streak
 - induces **Nodal** and **Lefty-2** expression on the left side
 - these genes upregulate **PITX2**, a transcription factor responsible for left sidedness
Growth of the embryonic disc

- **embryonic disc:**
 - flat and almost round initially
 - elongated - a broad cephalic and a narrow caudal end

- expansion of the embryonic disc:
 - mainly in the cephalic region - by a continuous migration of cells from the primitive streak region in a cephalic direction
 - the region of the primitive streak remains more or less the same size
 - invagination of surface cells in the primitive streak and their subsequent migration forward and laterally continues until the end of the fourth week
 - the primitive streak shows regressive changes, rapidly shrinks, and soon disappears
 - in the cephalic part, germ layers begin their specific differentiation by the middle of the third week
 - in the caudal part, differentiation begins by the end of the fourth week
Thank you...